Reduction of Aβ Generation by Schisandrin B through Restraining Beta-Secretase 1 Transcription and Translation
نویسندگان
چکیده
BACKGROUND Beta-secretase 1 (BACE1) is a rate-limiting enzyme in the generation of amyloid beta peptides, which are associated with Alzheimer's disease (AD). It has been reported that Schisandrin B could improve cognitive functions in animal models of AD, but the underlying mechanisms are not completely understood. MATERIAL AND METHODS In this research, in order to investigate the effects of Schisandrin B on amyloid-β (Aβ) metabolism and its mechanisms, amyloid precursor protein (APP) and its proteolytic products were determined by enzyme-linked immunosorbent assay (ELISA), western blotting, and RT-PCR after incubation of N2a/Swe cells with Schisandrin B. RESULTS The results indicated that Schisandrin B can significantly reduce the level of secretion of Aβ40 and Aβ42 secreted in N2a/Swe cells. Additionally, there was nonsignificant change in APP level after Schisandrin B treatment. Treatment of Schisandrin B dramatically reduced the mRNA and protein expression levels of BACE1. Moreover, Schisandrin B treatment resulted in a reduction of protein level of sAPPβ, an APP fragment cleavage by BACE1. CONCLUSIONS These results suggest that Schisandrin B inhibits the transcription and translation of BACE1, suppresses the activity of BACE1, and ultimately attenuates Aβ generation, which provides a novel mechanism for the regulation of Aβ metabolism by Schisandrin B.
منابع مشابه
TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production.
Generation of β-amyloid (Aβ) peptide in Alzheimer's disease involves cleavage of amyloid precursor protein (APP) by γ-secretase, a protease known to cleave several substrates, including Notch. Finding specific modulators for γ-secretase could be a potential avenue to treat the disease. Here, we report that transient receptor potential canonical (TRPC) 6 specifically interacts with APP leading t...
متن کاملEffects of Folic Acid on Secretases Involved in Aβ Deposition in APP/PS1 Mice
Alzheimer's disease (AD) is the most common type of dementia. Amyloid-β protein (Aβ) is identified as the core protein of neuritic plaques. Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. Previous studies indicated that folate deficiency elevated Aβ deposition in APP/PS1 mice, and this r...
متن کاملMetabolic Dysfunction of Astrocyte: An Initiating Factor in Beta-amyloid Pathology?
Astrocytes, the most important energy regulator in the brain, support brain energy needs. In the meantime, numerous studies have demonstrated that impaired brain glucose metabolism is closely linked to abnormal astrocytic metabolism in AD. Indeed, the interaction between amyloid plaques and perturbed astrocytic homeostasis contributes to AD pathogenesis and astrocytic metabolic dysfunction is t...
متن کاملCatalpol Inhibits Amyloid-β Generation Through Promoting α-Cleavage of APP in Swedish Mutant APP Overexpressed N2a Cells
Amyloid-β (Aβ) peptides play a crucial role in the pathogenesis of Alzheimer's disease (AD), due to its neurotoxicity. Thus, blocking Aβ generation and aggregation in the brain has been realized as an efficient way for the prevention of AD. The natural product catalpol, isolated from Rehmannia glutinosa, has shown neuroprotective activities through inhibiting soluble Aβ production, degrading Aβ...
متن کاملRoles of glycogen synthase kinase 3 in Alzheimer's disease.
Evidence from basic molecular biology has noted a critical role of GSK-3 in Alzheimer's disease (AD) pathogenesis such as beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangle (NFT), and neuronal degeneration. Aβ generation and deposition represents a key feature and is generated from APP by the sequential actions of two proteolytic enzymes: β-secretase and γ-se...
متن کامل